
Towards the design of unexploitable construction
mechanisms for multiple-tree based P2P

streaming systems

Michael Brinkmeier2, Mathias Fischer1, Sascha Grau2, and Guenter Schaefer1

1 Telematics and Computer Networks, TU Ilmenau
2 Automata and Formal Languages, TU Ilmenau

Abstract. In peer-to-peer based live streaming systems, a great num-
ber of participants have to cooperate to efficiently and reliably distribute
a continuous flow of data. Each receiving peer in return provides its
resources to the system. Since these systems operate in a completely
distributed manner, it is of particular importance, to prevent malicious
members from harvesting important topology information or influenc-
ing the streaming system to their needs. In this article, we analyze po-
tential attack methods on multiple-tree-based P2P streaming systems,
discuss important design decisions to constrain the impact of malicious
behaviour, and we introduce the new concept of peer testaments. By an-
alyzing existing systems, we show that so far only few attention has been
given to the design of unexploitable construction mechanisms. Based on
the identified design decisions, we propose a novel streaming system and
evaluate it by exposing it to different types of internal attackers. Our
results show that these attackers have to spend large effort to reach
relevant positions in the streaming topology and that their bandwidth
contribution far outnumbers the damage they achieve.

1 Introduction

In recent years, peer-to-peer (P2P) based Application Layer Multicast (ALM)
live streaming systems have become a major topic of interest, both in research
and practical application. In such a system, a continuous flow of data - the
stream - is distributed from a source node to a great number of peers by utilizing
their resources for redistributing the stream to other peers. A major advantage
of such a design is that the number of participants can grow independently of
the source’s upload bandwidth.

ALM systems are commonly classified into pull and push approaches. Push
approaches create and maintain an explicit topology for content distribution,
whereas in pull approaches every node explicitly requests each part of the stream
at other participating nodes. So, pull approaches require to preload the stream
well in advance of the playout, which causes relatively high delays. Therefore,
they are out of scope of this article and the main emphasis is put on push-based
approaches, which organize their participants in a topology of one or more span-
ning trees, each rooted at the source node. If multiple trees are used, the source

divides the stream into equally sized substreams called stripes and distributes
each one via its own tree, thereby removing bottlenecks and improving resilience.
Thus, by using Multiple Description Coding or Forward Error Correction meth-
ods, it is possible to compensate the loss of one or several stripes.

Consequently, each peer takes part in every tree and automatically receives
each stripe from a node one step closer to the source, which is called parent
or predecessor. Equivalently, it redistributes one or more stripes to its children.
The set of all nodes transitively receiving data from a peer is its successor set.
Generally, we will say that a node is on a low level in a certain tree, if it is
located far away from the source.

In order to construct and maintain such topologies, a distributed mechanism
is required, especially since the set of participants is highly dynamic, because of
joining and leaving nodes (the so-called node churn). Elementary operations of
such a mechanism are bootstrapping, that is the way nodes join the system, and
repairing of trees after the announced or unannounced exit of nodes. Further-
more, multiple kinds of optimizations like balancing and flattening of the trees,
as well as bandwidth and timing optimizations are commonly implemented.

All these actions are performed by the participants using a common strategy.
Since topology maintenance always influences the position and hence the size of
a node’s successor set, it is important to design all mechanisms in such a way,
that they cannot be exploited by malicious participants for conducting attacks
against the distribution mechanism.

In a first step, this article collects basic properties of attacks on push-based
streaming systems in section 2. Our main contribution is given in section 3 by
discussing building blocks for unexploitable construction mechanisms for push-
based ALM streaming systems, including the new concept of peer testaments.
Current streaming systems are classified and analyzed in section 4 according to
the proposed building blocks, revealing that most of them provide no effective
defense against internal attackers. So, in section 5 we propose a streaming system
that includes an unexploitable topology construction mechanism, which gets
experimentally analyzed in section 6. Section 7 summarizes our findings and
gives an outlook on future work.

2 Attacks against P2P streaming topologies

There are two basic types of attackers, the external and the internal one. An
external attacker can only observe and attack the system from outside. Thus,
it may issue attacks on participating nodes without being sanctioned by the
system, allowing aggressive approaches. In general, we assume, that an external
attacker can take down a specific node by issuing a DOS attack against it,
or triggering some other effect which removes it from the system. The main
limitation of an external attacker is the fact, that it has to gather information
by eavesdropping the communications between nodes, which can be restricted
by using cryptographic protocols.

Unless an external attacker can gather a lot of information about the system,
an internal attacker is more powerful, especially if combined with an external
component. In the following, we specifically concentrate on variations of sleeper
attacks with additional capabilities, covering a wide range of possible attack
scenarios, since many attacker models can be reduced to a sleeper attack.

The sleeper attack is one of the most basic attacks. The attacker controls a set
of agents, which participate in the system. In addition, they may communicate
with each other or with a central authority, guiding the attack. The agents join
the system in the same way ordinary nodes do, and start participating. In this
way, they can easily use all procedures and protocols that the system provides.

In a passive sleeper attack, these agents simply wait until a certain condition
is met and then an attack is triggered. The point in time at which this happens,
may be chosen in many ways. Either the agents attempt to reach certain relevant
positions in the topology, or they just collect information and try to identify
important nodes or even the (possibly concealed) source itself. The second aim
is basically equivalent to the first, since usually the source can be identified by
a node that reaches a specific position. Hence we may assume, that an attack is
triggered as soon as the positions of the agents satisfy specific conditions.

How the agents (or the controlling authority) decide whether their current
positions are ’important‘, mainly depends on the signalling procedure of the
particular P2P streaming approach. If, for example, the system provides its
participants with informations about the number of other nodes depending on
their service (ie. their number of successors) or even the IDs of these nodes, the
attacker can calculate the exact damage it can cause at any given time. Hence,
it may simply trigger the attack, as soon as a given bound is reached. In other
situations, the position of a node may correlate with the time it was in the
system. In these cases, the attacker may simply wait for a specific time to pass
and then has a good chance that his agents may cause a given damage.

If the attacker decides or assumes, that the agents have reached good po-
sitions, it can trigger an attack. This might be a simple disruption, caused by
all agents leaving the system at the same time. Optionally, the agents may not
leave the system completely, but reduce their bandwidth, such that the quality
of service for nodes depending on them decreases significantly. Another way to
disrupt the service is a coordinated attack on specific nodes, which were previ-
ously identified by the agents. These attacks can either be issued by the agents
themselves, risking their discovery and possible sanctions like exclusion, or by
an assisting external attacker, leaving the agents concealed. Furthermore, the
agents can provoke damage with a resource-consuming attack, during which a
large number of agents try to connect to the same node with the goal of pre-
venting the target from forwarding the stream to other participants. This is a
variation of a DOS attack, consuming the bandwidth of a specific node.

Alternatively, the agents may start to pollute the system by inserting cor-
rupted data into the stream. Successors may detect the pollution (e.g. by veri-
fying cryptographic signatures on the stream data) and try to reconnect to the
system, possibly leading to a massive reconstruction and a decrease in the qual-

ity of service. This Pollution attack can have the same effects as the failure of
the agents or the attack on specific nodes.

In addition to simply cooperating with the streaming system, the agents
may pursue their task to reach relevant positions more actively. For example,
in surprisingly many streaming systems, peers can promote themselves to more
important positions. They are often even rewarded for taking on more responsi-
bility, with the goal to inhibit freeriders.

A second way for the agents to gain importance is to lie about their per-
formance, making them seemingly better than other peers. This misinformation
may lead to a ’false promotion’, since the other nodes assume, that the agent is
the best possible choice for an important position. Or they may try to attract
peers to become their children, increasing their number of successors. Third,
they might support each other, eg. by recommending other agents for promotion
or giving them high reputations. Fourth, they can become aggressive in advance
by attacking other peers in their surroundings, provoking an (at least local) re-
construction of the topology, thereby giving them the chance of reaching a better
position. As above, these supporting attacks might be conducted by an external
assistant, preventing the discovery of the agents.

One important parameter of sleeper attacks is the degree of cooperation
between agents. The agents may be completely independent from each other,
preventing coordinated attacks – except if a global synchronized clock is used.
Or they may communicate via an external authority, allowing a coordinated
attack and the simultaneous collection of information from all agents. The costs
and modalities of communicating with the coordinating authority can be used
to model some specific types of attacks. For example the Sybil attack [Dou02], in
which agents are logical instances of the same physical node, may be modeled by
assuming, that the coordinator has at every time the knowledge of every agent.

In contrast to an external attack, an internal attacker supports the attacked
system for a while. Hence, the efficiency of an internal attack can be measured
by the quotient of the caused damage and the invested cost. Let X be a set of
nodes, which we assume to be agents or attacked due to the information, the
agents gathered. An estimate for the damage caused by the attack at time T is
the number of successors of the nodes in X at time T summed up over all stripes,
i.e. damage(X, T) =

∑k
i=1 succi,T (X), where succi,T (X) is the number of nodes

that are successor of at least one vertex in X in stripe i at time T . The cost
invested by the attacker can be measured by the total bandwidth, that his agents
provided over the time, i.e. bandwidth(X, T) =

∑T
t=1

∑
v∈X fanout(v, t), where

fanout(v, t) is the bandwidth that vertex v provided at time t. The efficiency
of an internal attack if given by the quotient of the caused damage and the
invested bandwidth, ie. efficiency(X) = damage(X)

bandwidth(X) . Using this measure, the
vulnerability of different systems against a specific attack can be compared,
with a higher value indicating a lower resilience. Alternatively, different attack
strategies on the same system can be compared.

3 Requirements for manipulation-proof construction
mechanisms

The basic principle of manipulation secure topology management mechanisms
is mistrust in all participating nodes. In such a mistrustful system, every node
is suspected to be malicious, is therefore provided with the minimum required
topology information and has to proof its reliability, e.g. by long-term coopera-
tion, before being considered for taking over responsibility.

When implementing this idea in a functional P2P streaming system, a list
of requirements for key design decisions arises, that concern the direction of the
distribution of topology information as well as repair mechanisms, choosing the
right nodes for node promotion, and bootstrapping issues.

3.1 Distribution of topology information.

To build both efficient and reliable streaming topologies, it is necessary to make
a certain degree of topology information available to the participating nodes. Ex-
amples for such information reach from the numbers of stripes/nodes/successors
over the IDs of nodes in relevant positions to a complete snapshot of the current
topology. Of course, it would also be possible to build topologies without any
more information than the IDs of nodes in a local neighborhood, however the
resulting topologies can become rather inefficient or unstable.

On the one hand, there is a trade-off between supporting topology manage-
ment decisions with more information, and on the other hand providing malicious
agents with the same data, which allows more effective attacks. Hence, all infor-
mation distributed should at least have a local character, such that it is related
only to limited regions of the topology and is only available to nodes from such
regions. A typical example is the successor number of a node and its children,
allowing important tree balancing operations. Without an estimate on the total
node number, a prediction of the own importance in a topology is not possible.

In addition to the kind of information to be distributed, the direction of
information flow is equally important. Clearly, a concentration of knowledge near
to the source is advantageous compared to a distribution towards the tree leafs.
This way the number of involved nodes is minimized and their reliability must
have been previously certified in some way. A related rule in the design process
must be the strict separation of stripe-related information. So, data describing
the role of a node in the distribution tree of a certain stripe should not allow
conclusions about its role in other stripe trees. This is necessary, since a node
being a predecessor in one stripe and hence receiving such information, may be on
very low levels in other stripes. Thus, without a separation, the source-directed
information flow would be violated.

3.2 Locality of repair mechanisms.

As soon as the failure of a relaying node is detected, appropriate topology repair
mechanisms have to be performed. Especially, a substitute node from a lower

level has to be found. Here, we can again choose between different alternatives.
At first, a repair mechanism considering nodes from the whole topology seems
to be desirable. This way, a node from a completely different subtree could take
over the role of the failed one. Thereby, the node profiting from the failure would
not belong to the direct neighborhood of the failed node, thus making attacks
on direct predecessors worthless.

However, without a coordinator with global topology knowledge, such a sys-
tem has a number of major drawbacks. First, the substitute node has to be
chosen, possibly involving a high number of other nodes, each of questionable
trust. Additionally, due to long communication paths, such a mechanism will
imply long repair times which are furthermore dependent on the total number
of topology nodes (the time may grow at least logarithmically with the number
of nodes). At last, the substitute node has to be replaced in its old position, too,
raising questions of convergence and the undesirable property that local failures
propagate through the whole topology.

Therefore, a local repair method in which the substitute node is chosen among
the children of the failed one, is preferable. This way restricts the repairs to
the subtree rooted at the failed node. Furthermore, the risk that disabling a
predecessor gives a chance to advance in the topology can partially be mitigated
by one of the reliability estimation mechanisms described later.

3.3 Initiative of repair actions.

The first nodes noticing the failure of a node v, are its direct children and its
predecessor (the exact order depends on the streaming system). Which of them
initiates the repair is another important design decision. In many systems the
initiative lies at the children; they either exit and rejoin the system or they try to
attach to their grandfather. The first variant has to be discouraged, since it leads
to unbalanced trees and requires a number of global rebalancing operations.

The second variant depends on regular updates on the grandfather’s ID from
each parent to its children. Clearly, this reveals a lot of topology information
to possibly unreliable nodes. Furthermore, during the reconnection process the
grandfather has to decide which of its affected grandchildren shall now take over
the role as head of the complete subtree that was formerly lead by the failed
node. Since the grandfather has no knowledge about the number and quality of
its grandchildren as well as to shorten repair times, it will be tempted to choose
the first candidate arriving. Clearly, an attacker disabling its own predecessor
has a timing advantage over its siblings.

Thus, regularly distributing child information to the predecessor and assign-
ing repair initiative to it, seems more appropriate. In this case, nodes detecting
a parent failure have to wait for a certain time threshold before acting on them-
selves. Meanwhile, their grandfather chooses a new child node from its grand-
children based on the information formerly sent by the failed node (additionally
ignoring connection requests of its grandchildren). When communicating this de-
cision to the involved nodes, the grandparent should authenticate itself, e.g. by
using a secret of the dead parent, which has been sent upwards before. Of course,

rebalancing and capacity-based adjustments of the topology are still necessary.
However, they will be restricted to the subtree in which the damage occured.

3.4 Decision process for node promotion and degradation.

Whenever higher topology positions shall be assigned or nodes are chosen to be
dropped to lower levels, the decision process is based on different properties of
the available candidates. Once again, a trade-off between efficiency and relia-
bility may occur. Typically compared key factors include available bandwidth,
successor number, participation time and the effort a node has already invested
in stream distribution. If available, the latter can be estimated by a trust or
reputation system.

Independent from the decision which of these properties are considered, it is
important to prevent candidates from lying, which requires some kind of proof.
Depending on the checked property, this may be done by demonstration in re-
sponse to some kind of challenge. Examples for such a procedure are bandwidth-
tests or cryptographic puzzles for a successor estimation [RSS07]. Another kind
of proof is to present witnesses, by direct communication or by forwarding cryp-
tographically secured testimonies, e.g. certifying good long-term service.

An especially interesting kind of proof is a testament, namely a certification
of a node about the suitability of its children as an heir to its position. In
contrast to a grandparent, needing to make a fast decision during the repair
process, such a testament is built over a long time of cooperation and may
include many factors. Thus, it enforces exemplary behaviour to nodes willing to
ascent in the topology. A simple way to use testaments, is by regularly submitting
such a rating of the own children to the predecessor, providing it with far more
consolidated information to choose its new child.

Note, that the chosen promoted node has no prior knowledge about its new
children, which are its former siblings. To prevent a whitewashing, it is therefore
important to initialize its own testament with the ratings made by the failed
node. To do this, the grandparent has to forward the testament to the heir.

Another point to consider when designing the decision process, is its pre-
dictability. Clearly, a completely deterministic behaviour will be open to ma-
nipulation by well-informed attackers. Therefore, it is advised to add a random
component, e.g. by equally choosing the node from some best portion of the
candidates. A different modification would be to frequently choose the second-
best candidate, thereby inhibiting lies about performance parameters, as long as
attackers do not cooperate.

3.5 Reliability estimation via long-term service.

From the factors estimating the reliability of nodes, the participation time is one
of the simplest. Furthermore, when statistically evaluating the distribution of
participation times in live streaming systems [SM04], there is a high probability
that old nodes will further continue to take part in the streaming system.

So, there is a concentration of long-living nodes on the high levels of the tree,
the time between position changes grows. This effect automatically results from
node churn under the precondition, that joining nodes are positioned as a leaf
at lowest level (see later), but can also be actively encouraged by the design of
the node promotion processes.

The ideal goal of such a mechanism must be to force the attacker to contribute
so much exemplary effort to the streaming system, in order to reach an important
position, that the resulting damage of its attack cannot compensate its costs.
More specifically, the system has to be designed, such that the efficiency of an
attack is as low as possible.

Additionally, information provided by a peer itself must always be mistrusted.
A solution consists in measuring only the time spent in the current depth layer
of the tree. This can be easily done by the peer’s predecessor. Clearly, in case
of a predecessor change, the new predecessor should initialize the time values
based on the testament of the old predecessor. Due to its promotion, its own
time value will be reset to zero.

3.6 Bootstrapping joining nodes.

A last important design decision concerns the way joining nodes are attached
to the existing topology. This decision affects both, the availability of topology
information and the balance of the tree topology. A very simple method is a node
insertion at the source of the stream. This way, the new node can be dropped
down to a position optimal for the tree balance. However, during this process it
gains information about the source and nodes from all tree layers.

A more common approach is the use of bootstrapping servers returning ran-
dom nodes as entry points. Since the great majority of nodes has only low posi-
tions and no information about their rank is provided, the information leakage
is bounded. The similar variant, returning only random leaf nodes would require
a significantly increased management effort and a single instance with global
knowledge. Furthermore, it would not avoid necessary balancing and optimiza-
tion operations, since without them the generated topologies grow very deep.

4 A Brief Discussion of Existing Systems

In some systems (e.g. HGM [RES01]) there exists a central coordinator, which
has global knowledge and assigns participating nodes to specific positions. But by
construction, such a coordinator is a single point of failure, which may be easily
attacked, if not concealed. Furthermore, usually the existence of such a central
authority limits the size of the system, preventing a good scaling behavior.

The well-known SplitStream protocol [CDK+03] requires that each node
knows its path to the source in every stripe, in order to avoid cycles. Hence,
every node knows the source. In addition the delegation of nodes is based on
their ID and allows joining nodes with a suitable ID to take over relevant posi-
tions immediately. Since these IDs contain a randomized component, a new node

might be assigned to important positions purely by random, supporting an at-
tacker with a large number of agents. Similar like SplitStream, some approaches
like DagStream [LN06], rely on information flowing from nodes in higher levels
of the tree to nodes residing in lower levels.

In approaches like Chunkyspread [VF06] or mTreebone [WXL07] the decision
for node delegation and promotion is made by children nodes instead of their
parents, which enables agents to lie.

The system proposed in [SWS07], operates with local topology knowledge and
local repair mechanisms. The decision process for the promotion or degradation
of a node is performed by its parent. However, this approach still has drawbacks.
A child node does not only know its father, in addition it also obtains information
about its grandfather, which is contacted by the child during a repair action.

5 A push-based streaming system utilizing a
manipulation resistant topology repair mechanism

Our approach is built at the basis of [SWS07], as described in section 4, and
extends it by utilizing the building blocks presented in section 3. Only local
topology information is used and the information flow is strictly directed from
leaf nodes upwards the tree, so that the view of participating nodes is restricted
to their parents in each stripe, instead of their grandparents as in [SWS07]. So in
our approach, a node communicates with its one-hop predecessor only, while it
has broader knowledge about its children and the total number of nodes below,
since this is required to enable a balancing of the underlying subtrees.

The main difference to [SWS07] is the use of testaments for node promotion
during repair actions. In the process, a proper candidate for a promotion is chosen
by the grandfather according to the node’s residence time, measured locally at
the father node. Therewith, the grandfather has the repair initiative and not
the children of the failed node, as in [SWS07]. This combination of mechanisms
now offers the evaluation of peers based on their long-term behaviour and avoids
making decisions based on untrusted, snapshot-like information.

Bootstrapping of joining nodes is done by inserting them at random nodes
that already take part in the streaming. A bootstrapping server provides a joining
node with a list of parent candidates, which will either accept it as a new child
or pass it on to one of their children.

6 Experiments

In order to evaluate our system with regard to the effectiveness of the integrated
building blocks discussed in section 3, a simulation study was conducted. The
system was simulated in the presence of local sleeper attackers with different
capabilities. We measured the ratio between potential damage, represented by
the overall number of successors of all attacking nodes, and the bandwidth spent
until this time.

Within the simulation, the stream is divided into 4 stripes distributed via 4
spanning trees. Summed up over all trees, every client has enough upload capac-
ity to supply at most 8 children. The source is capable of forwarding every stripe
3 times and therefore has a capacity of 12. A total number of 250 nodes was sim-
ulated, with 95% of them being ordinary streaming clients and the remaining 5%
being sleeper attackers with different capabilities. Ordinary nodes join uniformly
at the beginning of the simulation between the first 10 and 50 seconds and leave
the stream following a shifted pareto distribution with k = 1.3 and xmin = 1. To
keep the node number at a constant level, leaving nodes rejoin again uniformly
distributed between 5 and 10 seconds after their leave. The overall simulation
time comprises 300 seconds. Obviously, this user behavior may not reflect the
reality, but it allows to observe the system at a high load and enables us to draw
conclusions on the systems operation at a more realistic user behavior with less
node churn and longer streams. Attacker nodes join slightly later to an almost
complete but not fully established streaming topology, since we assume attacks
on already running and stabilized streaming systems. It is clear, that during the
unnatural massive node join at the beginning of the experiments, there is no way
to prevent agents from being positioned at high levels. So, the attacker nodes
join uniformly distributed between the first 30 and 60 seconds and remain in
streaming until the end of simulation. 32 simulation runs were conducted per
parameter set and for every graph 97.5% confidence intervals were computed.

Figure 1(a) shows the average residence time per level for all spanning trees,
i.e. the average time that nodes in a certain distance from the source remained
at this position. As discussed in section 3, a reliability estimation based on the
participation time of nodes in the system, should allow to move more reliable
nodes to higher levels of the tree. As can be seen in the figure, this is the case
for our system, since nodes closer to the source have growing residence times.

In addition, we simulated sleeper attackers with different additional capabil-
ities to test our topology construction mechanisms and to observe if an attacker
can exploit them to ascent in the topology. In our experiments, the agents were
able to kill their fathers once per a certain time interval. These varied between 0
(a passive sleeper) and 50 seconds. It is assumed that all agents were controlled
by one authority, therefore their damage and invested bandwidths combine.

Figure 1(b) shows the results for the ratio of maximum potential damage
per run to the invested bandwidth until that point in time. As expected, this
value is increased by a high attack frequency. However, the attack efficiency is
very low for all intervals, such that the attackers had to forward multiple times
more packets than are now not able to reach their destination. Furthermore, the
efficiency increase of the active attackers is low, demonstrating that the topology
repair mechanisms successfully reduce the impact of such strategies.

Figure 1(c) shows the ratio of achievable damage to invested bandwidth (at-
tack ”efficiency”, see also section 2) of the passive and the most effective active
attacker over time. Once more, the active attack is more successful, but at a
very low level. The efficiency of both follows a characteristic development. The
highest benefit for an attacker lies between 40 and 50 seconds, shortly after join-

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12

T
im

e
in

 s
ec

on
ds

Node depth

Mean Residence Time per Depth Level

(a)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 5 10 15 20 25 30 35 40 45R
at

io
 m

ax
im

um
 d

am
ag

e
to

 b
an

dw
id

th

Patricide Interval

Different Attackers and their Relative Max. Damage

(b)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 50 100 150 200 250 300R
at

io
 o

f d
am

ag
e

to
 in

ve
st

ed
 b

an
dw

id
th

Time in seconds

Attack Efficiency over Time (mean of 32 simulations)

Passive Attacker
Active Attacker, Interval 10

(c)

 0

 200

 400

 600

 800

 1000

 0 50 100 150 200 250 300

P
ot

en
tia

l D
am

ag
e

Time in seconds

Potential Attack Damage with and without known Grandfathers

Grandfather Attacker, [SWS07]
Father Attacker, current System

(d)

Fig. 1. (a) Mean residence time per level, (b)(c) attack efficiency (total number of
successors in all stripes / invested bandwidth), (d) absolute potential damage of our
improved streaming system in comparison to [SWS07]

ing the stream and after obtaining one or several children for its agents, since it
has spent nearly no effort in terms of invested bandwidth. The attack efficiency
quickly decreases when the attacking nodes stay longer in the system, in order
to reach more important positions in the streaming topology. This observation
gives further indication of the effectiveness of our topology building principles.

In order to compare our system to the approach mentioned in [SWS07],
we simulated both systems in the presence of sleeper attackers. The topology
knowledge of nodes in our system is restricted to the respective fathers in all
stripes, whereas in [SWS07] peers also know their grandfathers.

Exploiting this knowledge, instead of disrupting the service by switching off
itself, an agent in [SWS07] could kill all its grandfathers and in our improved
system an agent could only kill all of its father nodes. Figure 1(c) shows the
potential damage in our system in comparison to the potential damage caused
by the attacker in [SWS07]. As can be seen, the appliance of the building blocks
described in 3 lowers the potential attack damage between 20% and 30% in
comparison to [SWS07]. One might expect that the improvement is higher, but
it has to be taken into account that many attackers have common grandfathers.
As first experiments show, half the number of grandfather attackers reach the

same total damage as the original number of father attackers. A comprehensive
study of these effects will be future work.

7 Conclusions

Based on a study of the possibilities of internal attackers, we identified key design
decisions for the distributed repair and construction mechanisms of multiple-tree
based P2P live streaming systems, including the new concept of peer testaments.
Following these properties, we adapted an existing streaming system to make it
more manipulation resistant.

Our experiments confirm, that the proposed mechanisms prevent active and
passive sleeper attackers from rapidly ascending in the topology. More impor-
tantly, our simulation results also show that, generally, long-term internal attacks
are extremely inefficient for the attacker, since its agents are forced to serve the
streaming systems for a long time before reaching interesting positions.

In future, it will be of general importance, to develop a comprehensive for-
mal model of internal attackers, by which the multiple existing varieties can
be unified. Based on such an analytic foundation, the presented construction
mechanisms can be further analyzed and improved.

Acknowledgements

We would like to thank Stephan Beyer and Michael Braun for their valuable
help in implementing the simulation study.

References

[CDK+03] M. Castro, P. Druschel, A. Kermarrec, A. Nandi, A. Rowstron, and
A. Singh. Splitstream: high-bandwidth multicast in cooperative environ-
ments. In SOSP ’03, New York, NY, USA, 2003. ACM.

[Dou02] John R. Douceur. The sybil attack. In IPTPS ’01, London, UK, 2002.
[LN06] J. Liang and K. Nahrstedt. Dagstream: locality aware and failure resilient

peer-to-peer streaming. volume 6071. SPIE, 2006.
[RES01] V. Roca and A. El-Sayed. A host-based multicast (hbm) solution for group

communications. In ICN ’01. Springer-Verlag, 2001.
[RSS07] M. Rossberg, G. Schaefer, and T. Strufe. Using recurring costs for reputation

management in peer-to-peer streaming systems. SecureComm, 2007.
[SM04] K. Sripanidkulchai and B. Maggs. An analysis of live streaming workloads

on the internet. In in Proc. of ACM IMC, pages 41–54. ACM Press, 2004.
[SWS07] T. Strufe, J. Wildhagen, and G. Schäfer. Network-Efficient and Stable

Overlay-Streaming Topologies (German: Netzwerkeffizienz und Stabilität
von Overlay-Streaming-Topologien). In KIVS, 2007.

[VF06] J. Venkataraman and P. Francis. Chunkyspread: Multi-tree unstructured
peer-to-peer multicast, 2006.

[WXL07] Feng Wang, Yongqiang Xiong, and Jiangchuan Liu. mtreebone: A hybrid
tree/mesh overlay for application-layer live video multicast. ICDCS, 2007.

